Spindle Position in Symmetric Cell Divisions during Epiboly Is Controlled by Opposing and Dynamic Apicobasal Forces
نویسندگان
چکیده
Orientation of cell division is a vital aspect of tissue morphogenesis and growth. Asymmetric divisions generate cell fate diversity and epithelial stratification, whereas symmetric divisions contribute to tissue growth, spreading, and elongation. Here, we describe a mechanism for positioning the spindle in symmetric cell divisions of an embryonic epithelium. We show that during the early stages of epiboly, spindles in the epithelium display dynamic behavior within the plane of the epithelium but are kept firmly within this plane to give a symmetric division. This dynamic stability relies on balancing counteracting forces: an apically directed force exerted by F-actin/myosin-2 via active cortical flow and a basally directed force mediated by microtubules and myosin-10. When both forces are disrupted, spindle orientation deviates from the epithelial plane, and epithelial surface is reduced. We propose that this dynamic mechanism maintains symmetric divisions while allowing the quick adjustment of division plane to facilitate even tissue spreading.
منابع مشابه
The LGN protein promotes planar proliferative divisions in the neocortex but apicobasal asymmetric terminal divisions in the retina.
Cell division orientation is crucial to control segregation of polarized fate determinants in the daughter cells to produce symmetric or asymmetric fate outcomes. Most studies in vertebrates have focused on the role of mitotic spindle orientation in proliferative asymmetric divisions and it remains unclear whether altering spindle orientation is required for the production of asymmetric fates i...
متن کاملApical Complex Genes Control Mitotic Spindle Geometry and Relative Size of Daughter Cells in Drosophila Neuroblast and pI Asymmetric Divisions
Drosophila neuroblast asymmetric divisions generate two daughters of unequal size and fate. A complex of apically localized molecules mediates basal localization of cell fate determinants and apicobasal orientation of the mitotic spindle, but how daughter cell size is controlled remains unclear. Here we show that mitotic spindle geometry and unequal daughter cell size are controlled by two para...
متن کاملThe equatorial position of the metaphase plate ensures symmetric cell divisions
Chromosome alignment in the middle of the bipolar spindle is a hallmark of metazoan cell divisions. When we offset the metaphase plate position by creating an asymmetric centriole distribution on each pole, we find that metaphase plates relocate to the middle of the spindle before anaphase. The spindle assembly checkpoint enables this centering mechanism by providing cells enough time to correc...
متن کاملinscuteable mRNA Localization Is Dynein-Dependent and Regulates Apicobasal Polarity and Spindle Length in Drosophila Neuroblasts
Drosophila neuroblasts undergo asymmetric divisions along the apicobasal axis to produce two daughter cells of unequal size and different developmental fate. Inscuteable (Insc) protein functions as part of an apically localized complex to coordinate orientation of the mitotic spindle and basal sorting of cell fate determinants. insc mRNA transcripts also localize apically in neuroblasts, yet th...
متن کاملp21-activated kinase 4 regulates mitotic spindle positioning and orientation
During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will sp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 22 شماره
صفحات -
تاریخ انتشار 2012